首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   22篇
  国内免费   20篇
  482篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   13篇
  2019年   10篇
  2018年   11篇
  2017年   19篇
  2016年   14篇
  2015年   11篇
  2014年   18篇
  2013年   41篇
  2012年   14篇
  2011年   20篇
  2010年   19篇
  2009年   28篇
  2008年   29篇
  2007年   15篇
  2006年   21篇
  2005年   9篇
  2004年   18篇
  2003年   15篇
  2002年   23篇
  2001年   6篇
  2000年   8篇
  1999年   13篇
  1998年   9篇
  1997年   5篇
  1996年   9篇
  1995年   4篇
  1994年   9篇
  1993年   7篇
  1992年   9篇
  1991年   7篇
  1990年   6篇
  1989年   8篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
排序方式: 共有482条查询结果,搜索用时 0 毫秒
1.
1. Behavioral experiments with jittering echoes examined acoustic images of sonar targets in the echolocating bat, Eptesicus fuscus, along the echo delay or target range axis. Echo phase, amplitude, bandwidth, and signal-to-noise ratio were manipulated to assess the underlying auditory processes for image formation. 2. Fine delay acuity is about 10 ns. Calibration and control procedures indicate that this represents temporal acuity rather than spectral discrimination. Jitter discrimination curves change in phase when the phase of one jittering echo is shifted by 180 degrees relative to the other, showing that echo phase is involved in delay estimation. At an echo detectability index of about 36 dB, fine acuity is 40 ns, which is approximately as predicted for the delay accuracy of an ideal receiver. 3. Compound performance curves for 0 degrees and 180 degrees phase conditions match the crosscorrelation function of the echoes. The locations of both 0 degrees and 180 degrees phase peaks in the performance curves shift along the time axis by an amount that matches neural amplitude-latency trading in Eptesicus, confirming a temporal basis for jitter discrimination.  相似文献   
2.
Vibration and sound communication in solitary bees and wasps   总被引:2,自引:0,他引:2  
ABSTRACT. Females of solitary bees ( Colletes cunicularius L.) and of digger wasps ( Bembix rostrata L.) produce buzzing sounds and are known to secrete volatile odours when digging their way from the subterranean nests to the soil surface. The odours allow patrolling males to determine the approximate position of the digging virgin female. The buzzes are measured as substrate-borne sound (soil buzz vibrations) and as air-borne sound (soil buzz sounds). Play-back experiments suggest that the soil buzzes are used by the males as additional cues for localization. Faint buzz sounds are emitted regularly by the male during genital contact in copulation. They may serve to change the receptivity of the female. Intense and broadband buzz sounds are produced by bees of either sex, if restrained from moving, perhaps serving to deter predators.  相似文献   
3.
We examined factors that affect spatial receptive fields of single units in the central nucleus of the inferior colliculus of Eptesicus fuscus. Pure tones, frequency- or amplitude-modulated sounds, or noise bursts were presented in the free-field, and responses were recorded extracellularly. For 58 neurons that were tested over a 30 dB range of sound levels, 7 (12%) exhibited a change of less than 10° in the center point and medial border of their receptive field. For 28 neurons that were tested with more than one stimulus type, 5 (18%) exhibited a change of less than 10° in the center point and medial border of their receptive field.The azimuthal response ranges of 19 neurons were measured in the presence of a continuous broadband noise presented from a second loudspeaker set at different fixed azimuthal positions. For 3 neurons driven by a contralateral stimulus only, the effect of the noise was simple masking. For 11 neurons driven by sound at either side, 8 were unaffected by the noise and 1 showed a simple masking effect. For the remaining 2, as well as for 5 neurons that were excited by contralateral sound and inhibited by ipsilateral sound, the peak of the azimuthal response range shifted toward the direction of the noise.Abbreviations E/E excitation at either ear - I/E inhibition at the ipsilateral ear, excitation at the contralateral ear - O/E no effect from the ipsilateral ear, excitation at the contralateral ear - FM downward frequency modulation - FM upward frequency modulation - IC inferior colliculus - ICC central nucleus of the inferior colliculus - ILD interaural level difference - ITD interaural time difference - PT pure tone - SAM sinusoidally amplitude modulated sounds - SFM sinusoidally frequency modulated sounds  相似文献   
4.
The orientation behaviour of bats (Phyllostomus discolor, Phyllostomidae), flying inside an octagonal roost-like chamber (ø: 100cm; h: 150cm) was examined.It has been shown that the bats begin turning manoeuvres during flight by turning their head towards the direction they intend to proceed to. During early phases of the flights, cumulative navigation errors were evident, indicating that endogenous spatial information plays a major role in the orientation of the bats. During later phases of the flight this error is diminished again. So it can be concluded that the bats start to use exogenous spatial information for orientation while approaching the target.In order to investigate the relative importance of vision, echolocation and endogenous spatial information for approaching the roost, the landing lattices inside the test arena were changed for non-grid dummies. We found that: 1. combined visual and endogenous information are more important than echoacoustical cues, 2. the bats learned quickly to switch their orientation behaviour in order to get a better performance in avoiding the dummies, 3. the learning performance was influenced by the visual similarity of dummies and the real landing lattice.  相似文献   
5.
Isolated outer hair cells (OHCs) and explants ot the organ of Corti were obtained from the cochlea of the echolocating bat, Carollia perspicillata, whose hearing range extends up to about 100 kHz. The OHCs were about 10–30 m long and produced resting potentials between-30 to -69 mV. During stimulation with a sinusoidal extracellular voltage field (voltage gradient of 2 mV/m) cyclic length changes were observed in isolated OHCs. The displacements were most prominent at the level of the cell nucleus and the cuticular plate. In the organ of Corti explants, the extracellular electric field induced a radial movement of the cuticular plate which was observed using video subtraction and photodiode techniques. Maximum displacements of about 0.3–0.8 m were elicited by stimulus frequencies below 100 Hz. The displacement amplitude decreased towards the noise level of about 10–30 nm for stimulus frequencies between 100–500 Hz, both in apical and basal explants. This compares well with data from the guinea pig, where OHC motility induced by extracellular electrical stimulation exhibits a low pass characteristic with a corner frequency below 1 kHz. The data indicate that fast OHC movements presumably are quite small at ultrasonic frequencies and it remains to be solved how they participate in amplifying and sharpening cochlear responses in vivo.Abbreviations BM basilar membrane - FFT fast Fourier Transfer - IHC inner hair cell - OHC outer hair cell  相似文献   
6.
A stereotypical approach phase vocalization response of the lesser bulldog bat, Noctilio albiventris, to artificial echoes simulating a virtual approaching object was used to assess the ability of the bat to analyze and extract distance information from the artificial echoes. The performance of the bat was not significantly different when presented with naturally structured CF/FM echoes containing FM elements that sweep continuously from about 75-55 kHz in 4 ms or with CF/FM echoes containing FM components constructed from a series of 98 pure tone frequency steps, each with a duration of 0.04 ms. The performance of the bat remained unchanged when the duration of the tone steps was increased up to 0.08 ms but declined sharply to a level that was significantly below that seen with a naturally structured echo when the steps were 0.09 ms or longer. The performance of the bat depended on the duration of the individual tone steps, which could not exceed a specific upper limit of about 0.08 ms. The study suggests that the bats have adaptations for processing individual narrow band segments of FM signals over specific time intervals.Abbreviations CF constant frequency - FM frequency modulation  相似文献   
7.
1.  Echolocating bats (Eptesicus fuscus) were trained to discriminate between simulated targets consisting of one or two echo-wavefronts with internal time delays of up to 100 s. Spectral and temporal properties and total signal energy of the targets were evaluated and predictions for performances of bats derived from receiver models were compared with measured performances.
2.  Eptesicus fuscus was able to discriminate a one-wavefront target from two-wavefront targets with distinct internal time delays (12 s, 32–40 s and 52–100 s). Performance was not affected by changes in total signal energy. Bats also successfully discriminated between two-wavefront targets with different internal time delays.
3.  Performance predicted from differences in total energy between targets did not match the measured performance, indicating that bats did not rely on total echo energy. This finding is also supported by the behavioral data. Performance predicted from spectral and temporal receiver models both matched the measured performance and, therefore, neither one of these models can be favored over the other.
4.  The behavioral data suggest that Eptesicus fuscus did not transform echo information into estimates of target range separation and, therefore, did not perceive the two wavefronts of each simulated two-wavefront echo as two separate targets.
  相似文献   
8.
Airborne sound signals emitted by dancing honeybees (Apis mellifera) contain information about the locations of food sources. Honeybees can perceive these near field sounds and rely on them to decode the messages of the dance language. The dance sound is characterized by rhythmical air particle movement of high velocity amplitudes. The aim of the present study was to identify the sensory structures used to detect near field sound signals. In an operant conditioning experiment, bees were trained to respond to sound. Ablation experiments with these trained bees revealed that neither mechanosensory hairs on the antennae or head nor bristle fields at the joints of the antenna, but Johnston's organ, a chordotonal organ in the pedicel of the antenna, is used to detect near field sound in honeybees.  相似文献   
9.
A stereotyped approach phase vocalization response of Noctilio albiventris to artificial echoes simulating a virtual approaching object was used to assess the ability of the bat to analyze and extract distance information from the artificial echoes. The performance of the bats depended on the temporal pattern of frequency change of the continuously sweeping frequency modulated (FM) component of the signals. When the bats were presented with a CF/FM signal containing a time-reversed upward FM sweep, they responded with approach phase behavior at a performance level that was significantly below that seen with a CF/FM signal containing a naturally structured downward FM sweep. When the FM sweep was divided into a series of brief pure tone steps, the extent to which the bats showed a difference in their capability to process upward versus downward FM sweeps depended on the difference in frequency between the pure tone steps. The bats effectively processed downward but not upward FM sweeps when the difference in frequency between pure tone frequency elements of the FM sweeps was from about 100–200 Hz, but they effectually processed both downward and upward FM sweeps when the tonal elements composing the FM sweeps were separated by more than about 200 Hz. This suggests that the ability of the bats to effectively process downward but not upward FM sweeps is based on local interactions between adjacent frequency elements of the complex sounds.Abbreviations CF constant frequency - FM frequency modulated  相似文献   
10.
2012年6月,对湖南省石门县壶瓶山国家级自然保护区神景洞短嘴金丝燕的回声定位叫声进行研究,在黑暗山洞内使用录音仪器录制其自由飞行状态的声音后使用声音软件进行分析.短嘴金丝燕捕食归巢时,快速飞入洞口,在洞内有光区域不发声,到达洞内黑暗区域后开始发出回声定位叫声,且飞行速度减慢.声音分析结果表明其回声定位叫声为双脉冲组的噪声脉冲串型(noise burst),组内脉冲间隔很短[(6.6±0.42)ms],组间脉冲间隔较长[(99.3±3.86) ms],两者差异显著(P<0.01).对比第一、第二脉冲声音参数发现,主频和脉冲时程差异不显著,第一、第二脉冲主频分别为(6.2±0.08) kHz和(6.2±0.10) kHz (P>0.05);脉冲时程分别为(2.9±0.12) ms和(3.2±0.17) ms (P>0.05);最高和最低频率差异显著,第一、第二脉冲最高频率分别为(20.1±1.10) kHz和(15.4±0.98) kHz (P<0.01),最低频率分别为(3.7±0.12) kHz和(4.0±0.09)kHz (P<0.05);第一脉冲频宽((16.5±1.17) kHz)宽于第二脉冲((11.4±1.01) kHz) (P<0.01);且第一脉冲能量[(-32.5±0.60) dB]高于第二脉冲[(-35.2±0.94) dB] (P<0.05).另外,短嘴金丝燕在黑暗山洞内的回声定位叫声还包含了部分超声波,最高频率可达33.2 kHz.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号